Structure of 2,3-Diphenyl-1-(*p*-tolyl)-1-aza-1,3-pentadiene

BY C. RUIZ-VALERO, E. GUTIÉRREZ-PUEBLA AND A. MONGE*

Instituto de Química Inorgánica 'Elhuyar', Serrano 113, 28006 Madrid, Spain and Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense, 28040 Madrid, Spain

(Received 3 June 1985; accepted 9 August 1985)

Abstract. $C_{23}H_{21}N$, $M_r = 311.4$, triclinic, $P\overline{1}$, a = 9.927 (4), b = 10.143 (9), c = 10.487 (3) Å, $\alpha = 63.29$ (2), $\beta = 96.26$ (5), $\gamma = 108.97$ (2)°, V = 891.2 (9) Å³, Z = 2, $D_x = 1.16$ g cm⁻³, λ (Mo K α) = 0.71069 Å, $\mu = 0.621$ cm⁻¹, F(000) = 332, T = 290 K, R = 0.056 for 2095 observed reflexions. The two double bonds are oriented synclinal with respect to each other, the N=C-C=C torsion angle being -69.3 (5)°; bond lengths are N=C, 1.280 (4); C-C, 1.486 (4); C=C, 1.327 (6) Å.

Introduction. The title compound has been synthesized and studied by spectroscopy by Arjona, Plumet, Ossorio & Santesmases (1985).

We have determined the crystal structure of this compound in order to establish the stereochemistry around the double-bond system, which was difficult to resolve by conventional techniques such as ¹H NMR and ¹³C NMR spectroscopy.

Experimental. Yellow, prismatic crystal $0.3 \times 0.5 \times$ 0.6 mm. Enraf-Nonius CAD-4F automatic diffractometer; cell dimensions refined by least-squares fitting of θ values of 25 reflexions; intensities of 3887 unique reflexions, $1 < \theta < 27^{\circ}$, *hkl* -12, -13,0 to 12, 13, 13, monochromatic Mo Ka radiation, $\omega/2\theta$ scans; three reflexions monitored periodically during data collection showed no crystal decomposition: intensities corrected for Lorentz and polarization effects; 2095 considered observed $[I > 2\sigma(I)]$. Scattering factors for neutral atoms from International Tables for X-ray Crystallography (1974). Structure solved with MULTAN77 (Main, Lessinger, Woolfson, Germain & Declercq, 1977); best E map revealed all non-H atoms. An empirical absorption correction (Walker & Stuart, 1983) was applied at the end of the isotropic refinement; anisotropic full-matrix least-squares refinement, $\sum w(|F_c| - |F_c|)^2$ minimized; unit weights; a difference synthesis calculated with reflexions having $\sin\theta/\lambda <$ 0.5 Å^{-1} showed all H atoms as highest peaks; final refinement with fixed isotropic temperature factors for

0108-2701/85/121791-02\$01.50

H atoms led to R = 0.056; max. and average Δ/σ in final LS cycle 0.53 and 0.032; final difference synthesis had no electron density > 0.24 or < $-0.22 \text{ e} \text{ Å}^{-3}$. No correction for secondary extinction. Most of the calculations performed with XRAY76 (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976). Least-squares planes computed with PARST5 (Nardelli, Musatti, Domiano & Andreetti, 1965).

Discussion. Table 1[†] contains the final atomic parameters. Fig. 1 (Johnson, 1965) shows the geometry of the structure and the atom labelling. Bond lengths and angles together with their e.s.d.'s are in Table 2.

Table 1. Coordinates and equivalent isotropic thermal parameters $(Å^2 \times 10^3)$

$U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j \cos(a_i, a_j).$								
	x	у	Ζ	U_{eq}				
N	-0.0597 (3)	-0.2580(3)	0.9665 (3)	53 (1)				
C(1)	0.0676 (3)	-0.1896 (3)	0.9117 (3)	47(1)				
C(2)	0.1058 (3)	-0.0972 (3)	0.7563 (3)	45 (1)				
C(3)	0.0811 (3)	-0.1667 (4)	0.6711 (4)	58 (2)				
C(4)	0.0220 (4)	-0.3368(5)	0.7165 (5)	78 (2)				
C(5)	0.1809 (3)	-0.2430 (4)	0.8833 (3)	51 (2)				
C(6)	-0.2051 (3)	-0.1018 (4)	0.8031 (4)	58 (2)				
C(7)	-0.3312 (4)	<i>−</i> 0·0965 (4)	0.7334 (4)	63 (2)				
C(8)	-0.4344 (3)	-0.2292 (4)	0.7391 (4)	60 (2)				
C(9)	-0.4094 (4)	-0.3694 (4)	0.8216 (4)	64 (2)				
C(10)	-0.2866 (4)	-0.3765 (4)	0-8934 (4)	61 (2)				
C(11)	-0.5680 (4)	-0.2209 (5)	0.6572 (5)	87 (3)				
C(12)	0.1716 (3)	0.0734 (3)	0.7037 (3)	45 (1)				
C(13)	0.1701 (3)	0.1452 (4)	0.7892 (3)	52 (2)				
C(14)	0.2309 (4)	0.3039 (4)	0.7426 (4)	58 (2)				
C(15)	0-2952 (4)	0.3946 (4)	0.6072 (4)	62 (2)				
C(16)	0.2987 (4)	0.3257 (4)	0-5216 (4)	66 (2)				
C(17)	0.2392 (4)	0.1679 (4)	0.5683 (4)	61 (2)				
C(18)	0.1862 (3)	-0·2086 (3)	1.0118 (3)	49 (2)				
C(19)	0.1586 (4)	-0.2618 (4)	1.1572 (4)	61 (2)				
C(20)	0.2689 (5)	-0.2797 (5)	1.2503 (4)	75 (2)				
C(21)	0.4032 (5)	-0·2468 (5)	1.2011 (5)	80 (2)				
C(22)	0.4312 (4)	-0.1955 (5)	1.0585 (5)	79 (2)				
C(23)	0.3230 (4)	-0·1747 (4)	0.9641 (4)	64 (2)				

© 1985 International Union of Crystallography

^{*} Author for correspondence.

⁺Lists of structure amplitudes, anisotropic thermal parameters, H-atom parameters and bond lengths and angles involving H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42426 (30 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Bond len	gths (Å) and	angles (°)	with e	.s.d.'s	in
	parenthe	eses			

N-C(1)	1.280 (4)	C(9)C(10)	1.366 (5)	
N-C(5)	1.415 (4)	C(12)-C(13)	1.390 (6)	
C(1)-C(2)	1.486 (4)	C(12) - C(17)	1.397 (4)	
C(1) - C(18)	1.490 (5)	C(13)-C(14)	1.386 (5)	
C(2) - C(3)	1.327 (6)	C(14) - C(15)	1.383 (5)	
C(2) - C(12)	1.487 (5)	C(15)-C(16)	1.372 (7)	
C(3)-C(4)	1.487 (6)	C(16)-C(17)	1.376 (5)	
C(5)-C(6)	1.383 (5)	C(18) - C(19)	1.395 (5)	
C(5) - C(10)	1.385 (5)	C(18)-C(23)	1.379 (5)	
C(6)-C(7)	1.383 (5)	C(19)-C(20)	1.386 (6)	
C(7)-C(8)	1.382 (5)	C(20) - C(21)	1.364 (7)	
C(8)-C(9)	1.382 (6)	C(21)-C(22)	1.373 (7)	
C(8)–C(11)	1.504 (5)	C(22)–C(23)	1.381 (6)	
C(1) - N - C(5)	122.4 (3)	C(2)-C(12)-C(1	7) 121.9 (3)
N-C(1)-C(18)	117-2 (3)	C(2)-C(12)-C(1)	3) 120.9 (3)
N-C(1)-C(2)	125-1 (3)	C(13)-C(12)-C((17) 117-1 (4	4)
C(2)-C(1)-C(18)	117.7 (3)	C(12)-C(13)-C((14) 122.0 (3)
C(1)-C(2)-C(12)	116-8 (3)	C(13)-C(14)-C(14)	(15) 119.5 (4	4)
C(1)-C(2)-C(3)	120-4 (3)	C(14)-C(15)-C((16) 119.4 (4	4)
C(3)-C(2)-C(12)	122.9 (3)	C(15)-C(16)-C((17) 121.1 (;	3)
C(2) - C(3) - C(4)	126.0 (3)	C(12)-C(17)-C(17)	(16) 120.9 (4	4)
N-C(5)-C(10)	118.6 (3)	C(1)-C(18)-C(2)	23) 121.5 (3	3)
N-C(5)-C(6)	122.8 (4)	C(1)-C(18)-C(1)	9) 119-4 (4	4)
C(6)-C(5)-C(10)	118.3 (4)	C(19)-C(18)-C((23) 119-1 (.	3)
C(5)-C(6)-C(7)	119.9 (4)	C(18)–C(19)–C((20) 119-4 (4	4)
C(6)-C(7)-C(8)	121.8 (4)	C(19)-C(20)-C((21) 120.7 (4	4)
C(7)-C(8)-C(11)	121.2 (4)	C(20)C(21)C((22) 120-4 (:	5)
C(7)–C(8)–C(9)	117.5 (4)	C(21)-C(22)-C	(23) 119-6 (4	4)
C(8)-C(9)-C(10)	121.3 (4)	C(18)-C(23)-C	(22) 120-8 (4	4)
C(5)-C(10)-C(9)	121-2 (4)			

The two phenyl groups are synclinal with respect to the C(1)-C(2) bond, torsion angle $C(18)-C(1)-C(2)-C(12), -71\cdot4$ (4)°.

In the double-bond system, the two double bonds are oriented synclinal about C(1)-C(2); the torsion angle N=C(1)-C(2)=C(3) is $-69\cdot3$ (5)°. The deviations of the atoms from the best least-squares plane through N,C(1),C(2),C(3) are 0.095 (3), -0.261 (4), 0.229 (4) and -0.124 (4) Å, respectively.

The packing of the crystal is determined solely by van der Waals interactions.

Fig. 1. ORTEP (Johnson, 1965) drawing of the molecule showing the atom numbering.

References

- ARJONA, O., PLUMET, J., OSSORIO, R. P. & SANTESMASES, M. J. (1985). Private communication. Departamento de Química Orgánica, Univ. Complutense.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72–98. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- MAIN, P., LESSINGER, L., WOOLFSON, M. M., GERMAIN, G. & DECLERCQ, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. D. (1965). *Ric. Sci.* **35**, 807–810.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A 39, 158-166.

Acta Cryst. (1985). C41, 1792-1794

Structure of 2-Benzoyl-1,2-dihydro-1-isoquinolinecarbonitrile

By E. Tykarska, M. Jaskólski and Z. Kosturkiewicz*

Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland

(Received 27 November 1984; accepted 4 June 1985)

Abstract. $C_{17}H_{12}N_2O$, $M_r = 260.30$, monoclinic, $P2_1/c$, a = 7.2105 (9), b = 12.628 (2), c = 15.953 (2) Å, β

* To whom correspondence should be addressed.

0108-2701/85/121792-03\$01.50

= 112.26 (1)°, V = 1344.3 (3) Å³, $D_m = 1.285$, $D_x = 1.286 \text{ Mg m}^{-3}$, Z = 4, $\lambda(\text{Cu } K\alpha) = 1.54178 \text{ Å}$, $\mu(\text{Cu } K\alpha) = 0.661 \text{ mm}^{-1}$, F(000) = 554, room temperature, R = 0.040 for 1579 observed reflexions. The

© 1985 International Union of Crystallography